Exact Formula and Improved Bounds for General Sum-Connectivity Index of Graph-Operations
نویسندگان
چکیده
منابع مشابه
Some new bounds on the general sum--connectivity index
Let $G=(V,E)$ be a simple connectedgraph with $n$ vertices, $m$ edges and sequence of vertex degrees$d_1 ge d_2 ge cdots ge d_n>0$, $d_i=d(v_i)$, where $v_iin V$. With $isim j$ we denote adjacency ofvertices $v_i$ and $v_j$. The generalsum--connectivity index of graph is defined as $chi_{alpha}(G)=sum_{isim j}(d_i+d_j)^{alpha}$, where $alpha$ is an arbitrary real<b...
متن کاملSome Bounds on General Sum Connectivity Index
function f: G , with this property that f(G1) = f(G2) if G1 and G2 are isomorphic. There are several vertex distance-based and degree-based indices which introduced to analyze the chemical properties of molecule graph. For instance: Wiener index, PI index, Szeged index, geometric-arithmetic index, atom-bond connectivity index and general sum connectivity index are introduced to test the perf...
متن کاملBounds for the general sum-connectivity index of composite graphs
The general sum-connectivity index is a molecular descriptor defined as [Formula: see text], where [Formula: see text] denotes the degree of a vertex [Formula: see text], and α is a real number. Let X be a graph; then let [Formula: see text] be the graph obtained from X by adding a new vertex [Formula: see text] corresponding to each edge of X and joining [Formula: see text] to the end vertices...
متن کاملeccentric connectivity index and eccentric distance sum of some graph operations
let $g=(v,e)$ be a connected graph. the eccentric connectivity index of $g$, $xi^{c}(g)$, is defined as $xi^{c}(g)=sum_{vin v(g)}deg(v)ec(v)$, where $deg(v)$ is the degree of a vertex $v$ and $ec(v)$ is its eccentricity. the eccentric distance sum of $g$ is defined as $xi^{d}(g)=sum_{vin v(g)}ec(v)d(v)$, where $d(v)=sum_{uin v(g)}d_{g}(u,v)$ and $d_{g}(u,v)$ is the distance between $u$ and $v$ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2953338